
S.E.E.R., mod_openopc, et. Al
deployed in: any *nix flavor

GETTING STARTED WITH DEPLOYMENT

– Determining your goals and needs
– 2013_0319
– Guide version 5

SUMMARY

So you've decided to install S.E.E.R. - great; now what? This document aims to answer that
question. What seems like a lot of hard to grasp and abstract purpose is actually a collection
of highly specific, easy to master principles.

S.E.E.R. Is made up of several 'Models'. The list is always growing, with more models being
developed (and revisions to old models) a constant activity. The thing to remember is that you
are welcome to use ALL of the models, some of the models, or just one of the models – it's up
to you. This approach allows a plant to deploy in 'steps', rather than 'all at once',
minimizing headache and maximizing success.

PEOPLE AND PLACES

S.E.E.R. Requires Administrators, Oversight, and Backup personnel. So, you'll have to decide
who that shall be for your location.

Typically, an Administrator will perform the 'day to day' answering of any user's questions,
have a solid understanding of the OPC Devices (PLC's) that are providing data to S.E.E.R., and
can manage the adding or removing of hardware from the system. Administrators should have a
solid understanding of Unix / Linux as well as Win32 based operating systems, OPC Servers,
and Networking – or be very eager and self-motivated to gain an understanding. There should be

at lest 2 Administrators for your system, but we advise about having too many “cooks in the
kitchen”.

Oversight shall be one and only one person, who by virtue of this title is granted sole
governance of the S.E.E.R. System, the hardware it resides on (computer server), and the
devices it connects to (PLC's or other). This person does not have to be someone who is
normally in charge of such things – otherwise it would be the Manager of IT in every location,
which may or may not be the best person for the task. Rather, choose someone with a wide scope
of knowledge in the areas of production / industrial equipment, computer systems in general,
and the ideals and spirit of your company. Oversight's duty is not to run the day to day of
the system, but to be an arbitrator who can 'split the baby in half' when there can not be
agreement between (for example) the PLC Programmer / the Production Manager / the Machine
Operator / the IT desktop group / the IT Infrastructure group.

Additionally, Oversight is responsible to any regulatory bodies (whether that be State, Local,
or Federal government) with regard to ensuring the validity and security of any required
documentation (ex. Weights-and-Measures).

Oversight shall not be an Administrator, and while he/she may very well typically support much
of the system's backend devices / infrastructure, it is advisable that he/she be someone who
does not typically support / maintain the system itself ... for the simple reason that a
person cannot remain unbiased if they work on something every day and take pride in it.

If the plant needs, Oversight can provide Project Planning and Direction function with regard
to S.E.E.R. -- “where are we going with this system?” / “how shall we use this system?” /
“what are our goals, and how will I ensure they are met?”

Backup personnel will need to be assigned to perform daily (ideally 7 day, but many
installations will only perform 5 day) backups of the system to tape. The preferred backup
tool is STaRBUC (Standard Tape Resource Backup Console for Linux). STaRBUC is accessible via
web-browser, and someone need only insert the days tape, and initiate the backup via a few
clicks in the browser. This person should be someone who is normally authorized to be around
and operate IN PRODUCTION MISSION CRITICAL COMPUTER SYSTEMS. This is a secure backup system
which tracks the authenticated user performing the backup / what tapes were used in the
backup / and what data was actually backed up.

You can read more on STaRBUC here:

http://www.spinellicreations.com/spark/project_starbuc.php

STaRBUC is available for download here:

http://download.spinellicreations.com/starbuc/

Typically, IT Help Desk and Support personnel are utilized for this role, however if need be an
Administrator can also pull 'double duty' as a Backup Person.

Lastly, choose somewhere to place the S.E.E.R. Server and associated hardware. There will
typically be a Near Line grade computer server, uninterruptable power supply backup, tape
drive, and cabling. Best practice is to purchase rack-mount components and then rack the
server, UPS battery, and tape drive together. Plug the server and tape drive into the UPS, and
then plug the UPS into a DEDICATED CIRCUIT. Also, be sure you can provide robust ethernet to
the location.

You should NEVER route OPC comm outside of your facility. While we're not a fan of routed
communication to begin with, routing outside of your facility is both insecure and potentially
unstable as degradation in response time will cause spurrious results.

You should NEVER route S.E.E.R. Outside of your facility (or at least not outside of your
company's secure internal network – we realize that your company may exist in many different
locations; that's fine, provided the link back and forth is NOT PUBLIC).

S.E.E.R. Was built and tested to run in a LAN environment (from a security point of view). It
is just secure enough to keep out any would be bad-guys within your organization, provided you
don't make a habit of hiring pHp hackers, in which case, we can't help you. At its
highest security setting, S.E.E.R. Is so tight that it's annoying to use, which is good (in a
way). However we do not endorse the use of S.E.E.R. Over the World Wide Web / Internet, as the
potential for exploiting the user-interface by moderately experienced hackers is very present
(in order to ensure compatibility with old / deprecated browsers, and in order to ensure that
S.E.E.R. Would work on slow / antiquated hardware [from the client's point of view], it was
intentionally coded in a such a manner that lacks certain modern security measures). That
said, we'd still be impressed if someone busted through it.

http://www.spinellicreations.com/spark/project_starbuc.php
http://download.spinellicreations.com/starbuc/

– WORKSHEET

Complete SEER_-_WORKSHEET_ADMINISTRATION_SETTINGS.ods and provide to your
INSTALLER.

Things to Get Out of the Way

Non existent sensors / data / and how to deal with it...

Programmers, do not fear – S.E.E.R. Was built realizing that you may have MUCH of this data
available from your devices, but not all of it. That's allright. Critical values are either
easily identified or declared as such, whereas the rest of the data (while highly useful and
generally awesome) can be 'faked' by simply providing 'zero' values to S.E.E.R.

Right now you're saying, “but I don't want to congest my backend network with a billion 'zero'
bits flying around for no reason other than to fill a silly form!”. Neither do we – you can
use the same 'zero' bit over and over again. Typically, an OPC server is going to cache
its reads, and in doing so, if you have (for sake of argument) 250 items that are 'null' or
'zero', and you take care to define all of them as (for example) B3:5/1 from the same device...
then that data point will be read by the OPC server only once.

A best practice here is to define a “null bit” or “null variable” inside of each of your PLC's
or OPC Devices. That way, anytime you have to pull from that device, and you're in the
unfortunate position of not having all the sensors you require (and therefore need to toss in a
'zero'), you can use the pre-existing “null bit” every time.

Old gear / finnicky communication protocols / what do you want me to do about it ?...

Got token ring? Not quite as charming as 'Got Milk?', but we digress. Ultimately, S.E.E.R.
Sits on ethernet, which means all of your equipment has to (somehow) get to ethernet. You've
got options, lots of them, but hardened industrial means are the best.

Bridging Profibus to Ethernet via a standalone PC/Workstation on the manufacturing facility
floor is not a 'robust' solution; and generally it's a bad idea. But, if that's all you've
got, we understand. That said, there are a lot of solutions out there for getting your
squirrely networks over to ethernet.

Allen Bradley Controllogix PLC racks can support 'see-through' bridging of networks, where a
rack outfitted with only an Ethernet card and a DHRIO card can effectively bridge up to 2
discrete Data Highway networks to a single (or multiple) Ethernet networks.

Go downstream a little further, an SLC-504 processor can be used to bridge a DH-485 network to
Data Highway... and if that processor is tied to one of the afore-mentioned DHRIO cards in a
Controllogix rack, then you have just figured out how to pull Data Sidewalk (DH-485) via
ethernet (note: this will likely require Rockwell's proprietary OPC Server built into RSLinx –
but the point is, it can be done).

The same can be said for various makes / models, but the point remains, a hardened industrial
protocol bridge supporting the specific protocol of your OPC Device (and thereby supporting OPC
communication over the bridge – to an OPC Server that supports both your device and viewing
your device via a bridge) will be vastly superior in terms of reliability than trying to hack-
the-world via software bridging.

That said, if you absolutely must, a performance gaming / CAD workstation PC with battery
backup, hardware raid mirror, and outfitted with a proprietary interface card (such as an
AB PKTX network PCI card) and an OPC Server software capable of negotiating that card – can
and will work quite well for harvesting data via mod_openopc for delivery to S.E.E.R.

What's this Gonna Cost Me?

Depends – how far do you want to push it... your initial cost of ownership is semi-large
(depending on deployment size), but will typically range between $5,000 and $30,000 USD, which
includes a beefy server / backup mechanism / and uninterruptable power. The software is free
(well, 99% of it – you will have to buy an OPC Server from a recognized firm such as Rockwell /
Kepware / Matrikon / et. al. And you'll need a license for 32 bit Windoze [until such time as
they build an OPC Server for *nix – {read as 'forever'}]), but that's typically less than
$1,500 USD.

Where it's going to hurt is in bringing your facility into line – making all of your necessary
OPC Devices ethernet friendly, or worse having to replace non-OPC devices with those that are
OPC friendly. Gladly, virtually all name brand industrial controllers and many many devices
such as cameras are OPC friendly if manufactured since 1995.

The good news is that you can build and install your S.E.E.R. Infrastructure now, and then add

your device I/O as you go along. For example, setup the Tank Model today with only level
data... over the next 2 to 5 years budget for adding the necessary sensors for temperature,
valve sensing (determine state – filling / emptying / etc...), and so on.

In the end, remember one thing – you're paying the same amount for your industrial equipment no
matter what solution you choose to use. But wouldn't you like to save 0.5M USD on software,
and use that money to buy more control and I/O? We sure would... and that is just one reason
why S.E.E.R. Is free software.

Backbone

S.E.E.R. Is driven by mod_openopc, which utilizes extension applications, such as syphon,
fieldgate_dm3_reporter, and others; it populates robust MySQL database tables built (by
default) with the InnoDB engine capable of 'on-the-fly' row-locked backups (rather than table-
locked offline backups). mysql_innodb_backup is the preferred method for DB dump (backup) and
restore in event of catastrophic hardware failure. Also, you may be wondering about the data
types that will be described in the next section (MODELS). Each data type listed is a MySQL
compliant DB data type. For reference as to what each term means, please see the following
article...

MySQL Numeric Types (this article is required reading):

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html

For info on plugins and utilities...

You can read more about mod_openopc here:

http://www.spinellicreations.com/spark/project_modopenopc.php

You can download mod_openopc here:

http://download.spinellicreations.com/mod_openopc/

You can read more on syphon here:

http://download.spinellicreations.com/mod_openopc/
http://www.spinellicreations.com/spark/project_modopenopc.php
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html

http://www.spinellicreations.com/spark/project_syphon.php

You can download syphon here:

http://download.spinellicreations.com/syphon/

You can read more on fieldgate_dm3_reporter here:

http://www.spinellicreations.com/spark/project_fieldgatedm3reporter.php

You can download fieldgate_dm3_reporter here:

http://download.spinellicreations.com/fieldgate_dm3_reporter/

You can read more on mysql_innodb_backup here:

http://www.spinellicreations.com/spark/project_mysqlinnodbbackup.php

You can download mysql_innodb_backup here:

http://download.spinellicreations.com/mysql_innodb_backup/

Development Status

S.E.E.R. Is, as of the revision of this document, coming off it's first vetted public release.

Administrator's guides (Deployment Guide / Server Build Sample(s)) are available, as well as
User-Guides for any Model that is not self-explanatory. However, the full Integrator's Guide
(read as: 'how to setup from bare metal') is still forthcoming - so some things you will not
have documentation for as of yet and will have to learn by word of mouth or training.

You can read more on S.E.E.R. here:

http://www.spinellicreations.com/spark/project_seer.php

You can download S.E.E.R. here:

http://download.spinellicreations.com/seer/

http://download.spinellicreations.com/seer/
http://www.spinellicreations.com/spark/project_seer.php
http://download.spinellicreations.com/mysql_innodb_backup/
http://www.spinellicreations.com/spark/project_mysqlinnodbbackup.php
http://download.spinellicreations.com/fieldgate_dm3_reporter/
http://www.spinellicreations.com/spark/project_fieldgatedm3reporter.php
http://download.spinellicreations.com/syphon/
http://www.spinellicreations.com/spark/project_syphon.php

CURRENTLY AVAILABLE MODELS

As of March, 2013; the following Core Models have been built, tested, and deployed – so
they're ready for your use!

– ATMOSPHERIC MODEL

– allows tracking the TEMPERATURE, Barometric PRESSURE, and HUMIDITY of an
environment. This may be a room, a cooler / freezer, a sauna, or any other
controlled environment (computer server room, etc...).

– go ahead and run it on Spiral Refridgerators, Distribution Center Coolers, and
Brine Canals.

– You do not have to use all available fields – for example, if you only wish to
track temperature, then the Pressure and Humidity data is always registered as
“zero”... no problem. You'll still get a nice report on your temperature over
time.

– For any area you wish to use this model, you will require the following data
points:

+-------------+-------------+
| MACHINENAME | varchar(30) |
+-------------+-------------+
TEMPERATURE	float(7,2)
HUMIDITY	float(7,2)
PRESSURE	float(7,2)
+-------------+-------------+

– Also define (GLOBAL):
– Unit of Measure (TEMPERATURE)
– Unit of Measure (PRESSURE)
– Unit of Measure (HUMIDITY)
– Graph Range (TEMPERATURE) for example, “0 to 200”
– Graph Range (HUMIDITY)
– Graph Range (PRESSURE)

– You should break down your items by location (LOCAL). For example, if you have 5
 Coolers, 2 Freezers, and 1 Outdoor area; then you may declare as follows:

– Local_COOLERS
COOLER_1 (or however you wish to distinguish)
COOLER_2
COOLER_3
COOLER_4
COOLER_5

– Local_FREEZERS
FREEZER_1
FREEZER_2

– Local_OUTDOOR
OUTDOOR_1

– Each Local group will have the following options which need to be declared:
– The parameters from the 'Global' options, above, ONLY IF THEY ARE NOT THE

SAME AS YOU ENTERED THERE! (you are allowed to override the defaults on a
per-Local 'set' basis).

– Snapshot time (in minutes); which dictates how far back (from the present
time) the system will analyze averages when a user displays the “Current
Status” of a room / machine.

– A small drawing (by hand) of the general “layout of land”, to allow users to
understand where rooms or machines are located in relation to each other.
Your administrator will then build a PNG image and integrate this into the
system.

– WORKSHEET

Complete SEER_-_WORKSHEET_ATMOSPHERIC_MODEL.ods and provide to your INSTALLER.

– BULK MODEL

– track inventory of bulk materials, such as chemical storage, water, ingredient or
other storage.

– For any area you wish to use this model, you will require the following data
points:

+--------------------+-------------+
| BULKNAME | varchar(30) |
+--------------------+-------------+
| INVENTORY_PERCENT | smallint(6) |
| INVENTORY_QUANTITY | int(11) |
+--------------------+-------------+

– Also define (GLOBAL):
– none

– You should break down your items by location (LOCAL). For example, if you have 5
 Chemical Tanks, 2 Ingredient Tanks, and 1 Water Tank; then you may declare as
 follows:

– Local_CHEM
CHEM_Acid (or however you wish to distinguish)
CHEM_Caustic
CHEM_Foamer
CHEM_Diesel
CHEM_Oil

– Local_INGREDIENT
INGREDIENT_Vineger
INGREDIENT_CornSyrup

– Local_OTHER
OTHER_Water

– Each Local group will have the following options which need to be declared:
– unit of measure for 'quantity'; such as “gal” for “gallons” or “lbs” for

pounds.

– Full point (percent); quantity in percent to consider an item as having
adequate stock to maintain production for a while. (typically 60 to 75 %)

– Reorder point (percent); quantity in percent to consider an item as being
necessary to reorder or replenish soon. (typically 25 to 50 %)

– Empty point (percent); quantity in percent to consider an item as being
critical / possibly insufficient to support any further production.
(typically 5 to 15 %)

– Appreciable change (percent); as many bulk product sensors are 'rough' in
their accuracy (feedback can bounce a few percent back and forth, in either
direction, without any actual inventory change), a change in inventory level
must be greater than this value in order to be considered in calculations by
the reporting system. (this is a trial and error value, however a 5 % value
is often sufficient for sensors with accuracies equal to or less than 2 %...
for 5 % accurate sensors, set this value to 10 %, and so on).

– Appreciable change for Restock (percent); a change in inventory level
greater than this value (in the positive direction) will be used to indicate
that the item was restocked / refilled. This should be roughly 3 times the
value of Appreciable change.

– WORKSHEET

Complete SEER_-_WORKSHEET_BULK_MODEL.ods and provide to your INSTALLER.

– CIP (Clean In Place) MODEL

– track the performance of various CIP systems throughout your facility, including
what line circuits were washed, when they were washed, how much water was used
during the wash, alarms during wash, and graph various critical control points
(such as temperature, conductivity, and flow) throughout the wash cycle.

– includes regulatory compliance by allowing supervisors to digitally sign and
comment on wash records.

– effectively replaces paper chart recorders!
– complies with Pasteurized Milk Ordinance when properly installed and administered
– For any area you wish to use this model, you will require the following data

points:

+---------------------+--------------+
| CIPNAME | varchar(30) |
+---------------------+--------------+
STATUS	smallint(6)
LINE_BEING_CLEANED	smallint(6)
STEP	smallint(6)
SUPPLY_TEMP	smallint(6)
RETURN_TEMP	smallint(6)
SUPPLY_FLOW	smallint(6)
RETURN_CONDUCTIVITY	mediumint(9)
WATER_USAGE	mediumint(9)
WATER_TYPE	tinyint(4)
+---------------------+--------------+

– Also define (GLOBAL):
– Unit of Measure (FLOW) ex. “gallons / minute”
– Unit of Measure (CONDUCTIVITY)
– Unit of Measure (VOLUME)
– Unit of Measure (TEMPERATURE)
– Graph Range Low (TEMPERATURE)
– Graph Range High (TEMPERATURE)
– Graph Range Low (CONDUCTIVITY)
– Graph Range High (CONDUCTIVITY)

– Graph Range Low (FLOW)
– Graph Range High (FLOW)
– Manual Record Entry Time Interval (minutes)
– Scantime (how often – in seconds – do you wish to poll data)
– Zerotime faults report as 1 minute duration? (yes or no – if a fault shows up

for one data scan, but not afterward, then it effectively has a duration of
'zero' seconds... should we ignore this fault [choice = 'no'] or give this
fault a duration of 1 minute [choice = 'yes'])

– You should break down your items by location (LOCAL). For example, if you have 5
 CIP Systems in the Mozzarella Dept., 2 in the Ricotta Dept., and 1 in the String
 Cheese Dept.; then you may declare as follows:

– Local_Mozzarella
MOZZ_CIP1 (or however you wish to distinguish)
MOZZ_CIP2
MOZZ_CIP3
MOZZ_CIP4
MOZZ_CIP5

– Local_Ricotta
RIC_CIP1
RIC_CIP2

– Local_String
STRING_CIP1

– Each Local group will have the following options which need to be declared:
– a list of CIP system status, integer values from 0 to 32767, where 0 is

always “Ready (Waiting)” (as in, System OK but not Running).
– Common status values are:

– 0 = active and ready
– 1 = cip running
– 2 = fill required
– 3 = cip in manual hold
– 4 = low water
– 5 = low temperature
– 6 = low conductivity
– 7 = cip stopped

– If you notice, all states (except 1) indicate a fault or hold condition.
If you wish to indicate other non-fault conditions, then do so at the
BEGINNING. For example, you may declare status values 0 through 3 as
non-fault values and then declare “anything over 3” as a fault. However
you cannot mix-and-match. So make sure all your non-fault statuses are
listed first!

– a list of available CIP line circuits, integer values from 0 to 32767, where
0 is always “none” or “not selected”. As with the previous variable, you may
list other states of selection, but all “real” lines must be last. For
example, you may say that 0 is “none”, 1 is “bad selection” and 2 is
“idle”... then declare that anything “above 2” is a “real CIP line”.

– Common example:
– 0 = none
– 1 = invalid selection
– 2 = receiving line A
– 3 = receiving line B
– 4 = silo #1
– 5 = silo #2
** real CIP lines > '1'

– a list of sequential CIP steps, integer values from 0 to 32767, where 0 is
always “reset of off” (or similar). As with the previous variable, you may
list other steps, but all “real” steps must be last. (we will forgo the
example this time – you get the idea...)

– Common example:
– 0 = reset or off
– 1 = fill tanks
– 2 = pre-rinse
– 3 = airblow
– 4 = return to drain
– 5 = acid wash
– 6 = airblow to acid tank
– 7 = acid recovery
– 8 = rinse to drain
– 9 = airblow to drain
– 10 = caustic wash

– 11 = air blow to caustic tank
– 12 = caustic recovery
– 13 = rinse to drain
– 14 = air blow to drain
– 15 = return to drain
– 16 = sanitize to drain
– 17 = airblow to drain
– 18 = airblow to drain
– 19 = vent pressure
– 20 = stop

– Now, perhaps you have 20 different line circuits on this hypothetical
system. And let's say that some of those line circuits do NOT use all of
these steps... for example, they may “skip” steps 5,6,7,8, and 9 because
they do not have an acid wash. That's fine. But you still need to list
each step (or “state of function”) that the CIP system itself can be in.
Just be sure to program your OPC device such that it displays the
appropriate step sequence for each line being washed. It is not uncommon
to have some line circuits start washing on “step 45” and end washing on
“step 82” -- even though “step 45” is actually the first step of their
particular wash cycle... it is the 45th state of existence for that CIP
skid.

– a list of all the different types of water used on these CIP systems, in
integer values from 0 to 32767, where 0 is always “none”.

– Common example:
– 0 = none
– 1 = treated water
– 2 = city water
– 3 = filtered water
– 4 = treated and city water simultaneously

– S.E.E.R. Provides HMI functionality in the form of CIP Step Controls.
– Note: this is OPTIONAL – and not really necessary at all unless you're

in an environment where you wish to 'at will' have remote CIP HOLD/STEP
access. Most installations will not bother with this.

– If you choose to enable Step Controls, then you will also have to
provide the following information:

– OPC Register (Write to force HOLD)
– Value to Write to force HOLD
– OPC Register (Write to force STEP)
– Value to Write to force STEP
– OPC Register (Disable machine operator from putting CIP into HOLD

or STEPPING)
– Value to Write to force DISABLE

– WORKSHEET

Complete SEER_-_WORKSHEET_CIP_MODEL.ods and provide to your INSTALLER.

– CHECKWEIGHER MODEL

– here is a common, but troublesome issue: you are an industrial facility which
utilizes product mass checks (via scale and/or high-speed checkweigher).
Obviously, you require logs of the checkweigher's performance (analyticals
regarding the quality of your accepted vs. rejected items, as well as a list of
rejects and when they occurred, among other things).

– S.E.E.R. Is a universal checkweigher reporting system; regardless of manufacturer
or model, and tested at speeds in excess of 200 units per checkweigher per minute
across multiple simultaneous checkweighers, S.E.E.R. Provides the reporting
functionality to satisfy both your internal analysis and most localities weights-
and-measures agencies.

– To accomplish this, S.E.E.R. Requires the syphon add-on, which communicates with
any checkweigher that is capable of exporting “individual mass (weight) output”
via Terminal Server. While some checkweighers may have this functionality built
in over ethernet, many do not – however virtually any checkweigher will have (or
have as an option) the ability to output individual mass via RS-232 / RS-485 or
some other serial-protocol. In this case, you would then attach (typically via
null-modem cable) a serial-to-ethernet terminal-server capable device (which
typically can be had from reputable manufacturers for $100 to $300 USD per unit).

S.E.E.R.'s preferred (only due to quality of operation) device is the Moxa
NPort series, available from http://www.moxa.com. Although any such device
will do the job nicely, provided it is run in “Terminal Server” or “TCP
Server” mode. This will allow syphon to effectively utilize the telnet
protocol to interface with the unit.

– Example device: http://www.moxa.com/product/NPort_5100A.htm
– Note: if your checkweigher outputs a different unit of measure than the one

you wish to use (for example, your checkweigher outputs “grams” but your
accepted unit of measure is “ounces”), syphon will translate this
automatically for you. However you must indicate this for EACH checkweigher
being used, otherwise it will be assumed that the unit of measure in which
your checkweigher is outputting data is the same unit of measure you wish to
view your reports in.

http://www.moxa.com/product/NPort_5100A.htm
http://www.moxa.com/

– For any area you wish to use this model, you will require the following data
points:

+------------+-------------+
| RECIPE | varchar(30) | (for example “8 oz. Shampoo”)
| TARGET | float(9,3) | (for example 8)
| DELTA_MIN | float(9,3) | (for example, 0.1 yields a 'min' of 7.9)
| DELTA_MAX | float(9,3) | (for example, 0.5 yields a 'max' of 8.5)
| TARE | float(9,3) | (for example, 0.25)
+------------+-------------+

– RECIPE indicates what you wish to call the 'preset' / 'routine' / or 'mode'
of your checkweigher. Usually this corresponds to some product type or name.

– The following parameters should be set so as to IDENTICALLY MATCH those on
your checkweigher (or group of checkweighers). Once set, the installer will
typically WORM the settings database, meaning they cannot be changed (and
should not be changed). If a recipe is updated on a checkweigher, then its
NAME on the checkweigher should be changed (for example “8 oz. Shampoo” would
become “8 oz. Shampoo R1” or something similar) and a NEW recipe preset
created in S.E.E.R. Failure to do so, or attempting to modify an existing
recipe within S.E.E.R. Will void compliance with weights-and-measures.

– TARGET is the target mass (in whatever unit of measure you are using)
– DELTA_MIN is the difference between the “minimum acceptable mass” and

the TARGET... so if you wish to reject anything below 7.5 oz, and you're
target is 8 oz., then set DELTA_MIN to 0.5

– DELTA_MAX is the difference between the “maximum acceptable mass” and
the TARGET... so to reject anything above 10 oz, and you're target is 8
oz., then set DELTA_MAX to 2.0 – be advised of the special case where
you wish to accept all over-weight items and only reject underweight
ones. In this case, set DELTA_MAX to “99999999” or some very large
number.

– TARE is the mass of any packaging around your product / item. This
determines the difference between GROSS and NET mass.

– This is critical... if your checkweigher outputs NET MASS then you
MUST set TARE to “0” (zero). If your checkweigher outputs GROSS
MASS, then you MUST set TARE to whatever the TARE setting is within
your checkweigher for each recipe!

– Also define (GLOBAL):
– Default Unit of Mesaure (MASS)
– Default Unit of Measure (LARGE MASSES) …

– such as monthly reports of production.
– Default Unit of Measure (SCALE FACTOR)

– SCALE FACTOR = value to multiply a measurement in MASS by if you wish
to know its equivelant measurement in LARGE MASS.

– Example... if MASS = “ounce” and LARGE MASS = “pound”, then
SCALE will be “1/16” or “0.0625”

– Default Unit of Measure (UNIT)
– how would you like to describe each unit? For example, valid answers

are “bottle”, “cup”, “each”, “box”, “jar”, etc...

– You should break down your items by location (LOCAL). For example, if you have 5
 checkweighers in the Mozzarella Dept., 2 in the Ricotta Dept., and 1 in the String

 Cheese Dept.; then you may declare as follows:
– Local_Mozzarella

MOZZ_SCALE1 (or however you wish to distinguish)
MOZZ_SCALE2
MOZZ_SCALE3
MOZZ_SCALE4
MOZZ_SCALE5

– Local_Ricotta
RIC_SCALE1
RIC_SCALE2

– Local_String
STRING_SCALE1

– Each Local group will have the following options which need to be declared:
– if and only if you wish to override the default settings for Units of Measure

and such, then you may handle your 'odd ball' checkweighers as follows,
otherwise, the default settings will be used (which we talked about above).

– Local Unit of Mesaure (MASS)
– Local Unit of Measure (LARGE MASSES)

– such as for monthly reports of production.
– Local Unit of Measure (SCALE FACTOR)

– SCALE FACTOR = value to multiply a measurement in MASS by if you
wish to know its equivalent measurement in LARGE MASS.

– Example... if MASS = “ounce” and LARGE MASS = “pound”, then
SCALE will be “1/16” or “0.0625”

– Local Unit of Measure (UNIT)
– how would you like to describe each unit? For example, valid

answers are “bottle”, “cup”, “each”, “box”, “jar”, etc...
– SNAPSHOT Time: defines how long (in minutes) the 'live view' will look back

to analyze your most recent performance. For low-speed checkweighers, 10 to
30 minutes is typically good. For high-speed units, 1 to 10 minutes is much
more informative of the units actual current performance.

– WORKSHEET

Complete SEER_-_WORKSHEET_CHECKWEIGHER_MODEL.ods and provide to your INSTALLER.

– Separation Pasteurization and Filtration MODEL

– the goal of this model was to effectively analyze “what is going in” and “what is
coming out” of a dairy plant's production processes. In such an environment, it
is not practical to look at “material produced per hour”, or any other hardened
metric of that nature. Rather, we want to know what resources are being used in a
process, and then measure how much useable material is produced.

– As the name implies, this model can track SEPARATORS, CLARIFIERS, ULTRA FILTRATION
SYSTEMS, REVERSE OSSMOSIS SYSTEMS, and HTST / PASTEURIZER SYSTEMS.

– For any area you wish to use this model, you will require the following data
points:

+------------------------------+--------------+
| MACHINE_NAME | varchar(30) |
+------------------------------+--------------+
| MACHINE_TYPE | tinyint(4) |
| STATE | tinyint(4) | ex. running, washing, idle.
| ALARM | smallint(6) | ex. any of various faults
| TURBIDITY | tinyint(4) | typically relative, in percent
SOURCE	tinyint(4)
DESTINATION1	tinyint(4)
DESTINATION2	tinyint(4)
SOURCE_FLOW	smallint(6)
DESTINATION1_FLOW	smallint(6)
DESTINATION2_FLOW	smallint(6)
SOURCE_TOTAL_FLOW	int(11)
DESTINATION1_TOTAL_FLOW	int(11)
DESTINATION2_TOTAL_FLOW	int(11)
POWER	smallint(6)
POWER_TOTAL	int(11)
BOWL_MOTOR_RPM	smallint(6)
BASELINEPRESSURE	mediumint(9)
CONCENTRATION_RATIO	smallint(6)
CONCENTRATION_VALVE_POSITION	tinyint(4)
PRESSURE_RAW	smallint(6)
PRESSURE_PASTEURIZE	smallint(6)
TEMPERATURE_INLET	float(5,2)
TEMPERATURE_PASTEURIZE	float(5,2)

| HRS_SINCE_CLEAN | smallint(6) | hours since last wash
| CIP_STEP | tinyint(4) | for self cleaning systems only
| CIP_TEMP | smallint(6) | – self clean only
| CIP_FLOW | smallint(6) | – self clean only
| CIP_WATER_TYPE | tinyint(4) | – self clean only
| CIP_WATER_USAGE | mediumint(9) | – self clean only
+------------------------------+--------------+

– Also define (GLOBAL):

– If you use different terms to describe these
machines, substitute as necessary.

– Default Units of Measurement...
– UM_MASS
– UM_VOLUME
– UM_WATER
– UM_TURBIDITY
– UM_FLOW
– UM_TEMPERATURE
– UM_POWER
– UM_POWER_RATE
– UM_ROTATIONAL_SPEED
– GRAPH_RANGE_TURBIDITY_LOW

– GRAPH_RANGE_TURBIDITY_HIGH
– GRAPH_RANGE_FLOW_LOW
– GRAPH_RANGE_FLOW_HIGH
– GRAPH_RANGE_PRESSURE_LOW
– GRAPH_RANGE_PRESSURE_HIGH
– GRAPH_RANGE_TEMPERATURE_LOW
– GRAPH_RANGE_TEMPERATURE_HIGH
– CONCENTRATION RATIO DIVIDED BY

– Totalizer meter rollover value
– a totalizer ultimately must be reset at some point, so any totalizer

that you program into an OPC device will AUTOMATICALLY reset itself to
zero (and begin totalizing from zero onward again) after it hits this
value.

– this number must be large enough that it offers meaningful cycling, for
example it should not rollover in less time than it takes to run one data
scan.

– typically, 30,000 is a good choice; it can be held by an unsigned integer
register, is large enough to suit most applications, and will provide
meaningful rollover.

– Manual record entry interval (MINUTES)
– in the event of a power outage, for regulatory checked systems (where you

are eliminating circular paper chart recorders) data should be written
down by hand (see the manual entry form for only the few critical items
necessary to log).

– this is typically done every 5 to 15 minutes, but each plant is different.
– INTERVAL FOR PASTEURIZERS
– INTERVAL FOR ALL OTHER SYSTEMS

– Scantime (how often – in seconds – do you wish to poll data)

– Zerotime faults report as 1 minute duration? (yes or no – if a fault shows up
for one data scan, but not afterward, then it effectively has a duration of
'zero' seconds... should we ignore this fault [choice = 'no'] or give this
fault a duration of 1 minute [choice = 'yes'])

– You should break down your items by location (LOCAL). For example, if you have 5
 machines in the Mozzarella Dept., 2 in the Ricotta Dept., and 1 in the String
 Cheese Dept.; then you may declare as follows:

– Local_Mozzarella
MOZZ_PASTEURIZER1 (or however you wish to distinguish)
MOZZ_SEPARATOR1
MOZZ_SEPARATOR2
MOZZ_UF1
MOZZ_UF2

– Local_Ricotta
RIC_CLARIFIER1
RIC_PASTEURIZER1

– Local_String
STRING_UF1

– Each Local group will have the following options which need to be declared:
– Each device's associated CIP source (“cleaned by East Cleaning System 1”),

or, if it is self cleaning, list it as “SELFCLEAN”.
– Cleaning warnings

– WARN @ ___ hours since clean (typically 16)
– ALARM @ ___ hours since clean (typically 20)
– FAULT @ ___ hours since clean (typically 24)

– An integer list of all possible states of all possible machines (in one list
from 0 to 32767), which must include a CLEANING state.

– An integer list of all possible alarms of all possible machines (in one list
from 0 to 32767).

– An integer list of all possible product sources (in one list from 0 to
32767).

– An integer list of all possible product destinations (in one list from 0 to
32767).

– If any machines are SELFCLEAN, then provide a list of all possible CIP steps
(in one list for all machines from 0 to 32767).

– Denote (as with the CIP model) where the “real steps” start.
– If any machines are SELFCLEAN, then provide a list of all possible CIP water

types (in one list for all machines from 0 to 32767).

– If any machines are SELFCLEAN, indicate whether you would like to use CIP
STEP CONTROLS (see CIP MODEL for a description of how these work), and
provide the following...

– OPC DEVICE LEAF (HOLD)
– OPC DEVICE LEAF (STEP)
– OPC DEVICE LEAF (LOCKOUT)
– VALUE TO WRITE TO DECLARE HOLD
– VALUE TO WRITE TO DECALRE STEP
– VALUE TO WRITE TO DECLARE LOCKOUT

– Indicate whether each machine has a Turbidity Sensor installed or not (in its
drain system).

– If 'yes', then decide if you wish to use Turbidity Alarm Acknowledgment
or not.

– If 'yes', then provide...
– OPC DEVICE LEAF (ACK ALARM)
– VALUE TO WRITE TO ACK ALARM

– Note: as of 1st public release (December, 2011), the gantt chart function
is fixed,
and does display properly.

– WORKSHEET

Complete SEER_-_WORKSHEET_SPF_MODEL.ods and provide to your INSTALLER.

** NOTE – when completing this worksheet, there is an additional tab titled
“help with table structure”, which will advise you how to properly setup
registers for the various machines, based upon what type of machine it is,
etc... as not all machines will use all fields – in fact no machine uses
all fields.

– TANK (and Silo) MODEL

– the TANK MODEL is designed to provide essential SCADA control to any tank /
receiving room supervision personnel, as well as provide historical and analytical
data regarding tank inventory, tank alarm / status, and tank temperature.

– includes regulatory compliance by allowing supervisors to digitally sign and
comment on all records.

– effectively replaces paper chart recorders!
– complies with Pasteurized Milk Ordinance when properly installed and administered
– For any area you wish to use this model, you will require the following data

points:

+--------------------+--------------+
| SILONAME | varchar(30) |
+--------------------+--------------+
| STATE | smallint(6) | ex. Filling, emptying, blending, idle.
| SOURCE | smallint(6) | ex. Receiving bay 1, silo 4, etc.
| DESTINATION | smallint(6) | ex. Silo 2, pasteurizer 5, separator 1.
| ALARM | smallint(6) | ex. Outlet valve manually open, etc.
| PRODUCT | smallint(6) | ex. Raw milk, blend #35, sweet cream...

 (typically manually entered via SEER)
| LEVEL_DENSITY | float(5,3) | typically mass per volume (lbs / gal)

 (typically manually entered via SEER)
| LEVEL_PERCENT | float(6,3) |
| LEVEL_MASS | mediumint(9) | ex. 100 pounds
| LEVEL_VOLUME | mediumint(9) | ex. 12 gallons
| TIME_SINCE_CLEAN | mediumint(9) | hours since last CIP sequence
| AGITATOR_MODE | tinyint(4) | which agitation preset is in use
| AGITATOR_LEVEL_ON | tinyint(4) | percent level agitator turn on

 (independent of agitator preset)
| AGITATOR_LEVEL_OFF | tinyint(4) | percent level agitator turn off

 (independent of agitator preset)
| AGITATOR_SPEED | tinyint(4) | current agitator speed

 (typically 0 to 100% of 60 hz)
| TEMPERATURE | float(7,2) |
+--------------------+--------------+

– Subsequently, if you wish to enable AGITATOR CONTROL via SEER, you will also need
the following data points (separate table)...

+------------+-------------+
| PRESETNAME | varchar(30) | agitation preset name (ex. “Group1_Blend_1-5”)
+------------+-------------+
| HIGHSPEED | tinyint(4) | agitation high speed setpoint (0 – 100% of 60 hz)
| LOWSPEED | tinyint(4) | agitation low speed setpoint (0 – 100% of 60 hz)
+------------+-------------+

– Also define (GLOBAL):

– Units of Measure
– Unit of Measure DENSITY
– Unit of Measure MASS
– Unit of Measure TEMPERATURE
– Graph Range TEMPERATURE LOW
– Graph Range TEMPERATURE HIGH

– What STATE will be used to indicate when a tank is in cleaning mode?
– Typically this is “CIP” or “Cleaning” and must match (case sensitive) the

value from the STATE list that you use to indicate cleaning mode.

– Manual record entry interval (MINUTES)
– in the event of a power outage, for regulatory checked systems (where you

are eliminating circular paper chart recorders) data should be written
down by hand (see the manual entry form for only the few critical items
necessary to log).

– this is typically done every 5 to 15 minutes, but each plant is different.
– INTERVAL FOR ALL TANKS

– Scantime (how often – in seconds – do you wish to poll data)

– Zerotime faults report as 1 minute duration? (yes or no – if a fault shows up
for one data scan, but not afterward, then it effectively has a duration of
'zero' seconds... should we ignore this fault [choice = 'no'] or give this

fault a duration of 1 minute [choice = 'yes'])

– You should break down your items by location (LOCAL). For example, if you have 5
tanks in the Mozzarella Dept., 2 in the Ricotta Dept., and 1 in the String Cheese
Dept.; then you may declare as follows:

– Local_Mozzarella
MOZZ_TANK1 (or however you wish to distinguish)
MOZZ_TANK2
MOZZ_TANK3
MOZZ_TANK4
MOZZ_TANK5

– Local_Ricotta
RIC_TANK1
RIC_TANK2

– Local_String
STRING_TANK1

– Each Local group will have the following options which need to be declared:
– List of TANK NAMES (in one list from 0 to 32767)
– OPC Device Leaf corresponding to the register which indicates each tank's

current PRODUCT.
– OPC Device Leaf corresponding to the register which indicates each tank's

current PRODUCT DENSITY.
– An integer list of all possible ALARMS of all possible tanks (in one list

from 0 to 32767)
– An integer list of all possible PRODUCTS in all possible tanks (in one list

from 0 to 32767)
– An integer list of all possible STATES of all possible tanks (in one list

from 0 to 32767), which must include a CLEANING state (and that must
correspond to the GLOBAL option you chose to indicate cleaning!)

– An integer list of all possible SOURCES of all possible tanks (in one list
from 0 to 32767)

– An integer list of all possible DESTINATIONS of all possible tanks (in one
list from 0 to 32767)

– Cleaning warnings
– WARN @ ___ hours since clean (typically 48)
– ALARM @ ___ hours since clean (typically 64)
– LOCKDOWN (or FLAG) @ ___ hours since clean (typically 72)

– Should these tanks use a CLEANING LOCKDOWN system?
– 'Yes' or 'No'

– If 'Yes', then your OPC Device will tally hours since clean, and
when this exceeds “LOCKDOWN @ ___ hours since clean”, your OPC
Device will automatically disable the function of the tank inlet
valve (or inlet AND outlet valve). At this point the tank will be
un-usable, and all product trapped inside.
– Note: you should be tallying hours since clean and reporting

that to S.E.E.R., even if you have no lockout function present,
regardless.

– You must then code a bit in your OPC Device, which may be written
to by SEER, which when written to with the proper value will allow
the LOCKDOWN to be released. SEER allows users with only the
highest level credentials (Quality Control / Super User /
Administrators) to unlock a locked tank.

– A list of OPC Device Leafs which correspond to the register for
each tank used to initiate a release of lockdown.

– What value should be written to any of the registers to release
that tank? (must be same value for all tanks, for example, writing
a “1” to N7:10 will release tank 1, N7:11 will release tank 2, and
so on and so forth.

– Would you like to enable AGITATION CONTROL for these tanks?
– 'Yes' or 'No'

– If 'Yes', then you should have a multi-preset agitation system in
place already which uses 2 speeds per preset (high and low), and is
configurable via an OPC Device.

– Which of the tanks in this model would you like to use AGITATION
CONTROL on (you can choose to use all or just some – you do not
have to use all).

– If you have variable frequency drives in service for this task,

list the drive manufacturer and model for each tank.
– If these drives have ethernet-enabled web-servers that show the

drive's current status, then list the IP address (and port if
necessary) of each drive's web server.

– For each tank or silo, indicate the following...
– OPC Device Leaf corresponding to register where AGITATION PRESET

(current running preset) is stored. This leaf must be writable
so that SEER can overwrite it with the user's choice when a user
chooses to change the PRESET.

– OPC Device Leaf corresponding to AGITATOR TURN ON LEVEL LOW (in
percent). This leaf must be writable to allow SEER to push
user's modifications to register.

– OPC Device Leaf corresponding to AGITATOR TURN ON LEVEL HIGH
(in percent). This leaf must be writable to allow SEER to push
user's modifications to register.

– An integer list of all possible AGITATION PRESETS (INSTALLERS ONLY
– read this as “AGITATOR STATE in the Local Options file”) of all
possible tanks (in one list from 0 to 32767)
– typically one of these presets (the first one, 0) will be “OFF”

or “OUT OF SERVICE”, allowing the user to be able to de-select
agitation all together if they wish.

– An integer list of all possible AGITATION PRESET COMMANDS (in one
list from 0 to 32767, and corresponding to the PRESETS) that will
command an OPC Device to put a particular tank into the chosen
PRESET state...

for example:

preset[0] = raw milk
preset[1] = blends #1 - #5
preset[2] = blends #6 - #8
preset[3] = whey
preset[4] = cream

command[0] = 1
command[1] = 2
command[2] = 4
command[3] = 8

command[4] = 16

in this example, we see that when a COMMAND value of “4” is
written to the specified OPC Device Leaf (of whatever silo
or tank we are working with), then that tank will be in the
the 'state' of PRESET #2 (which is “blends #6 - #8”)

– MIN / MAX values for AGITATOR TURN ON (what is the lowest value, in
percent, that a user may set as the 'turn on' point for a tank's
agitator – and the highest)

– MIN / MAX values for AGITATOR TURN OFF (what is the lowest value,
in percent, that a user may set as the 'turn off' point for a
tank's agitator – and the highest)

– MIN / MAX values for AGITATOR SPEED (what is the lowest speed,
[usually in percent] that a user may choose to use in making an
AGITATOR PRESET – and the highest)

– when using standard AC VFD's and squirrel cage motors, the
typical choices here are 20% low and 80% high to prevent motor
and drive damage.

– A list of OPC Device Leafs that correspond to the speed setting
location for each AGITATION PRESET's high and low speed setting.

– For example, let's say you have a preset called “milk 1”. Now
“milk 1” will have a low speed and a high speed, and let's say
we store the value for high speed at N7:10 and the value for
low speed at N7:11

– WORKSHEET

Complete SEER_-_WORKSHEET_TANK_MODEL.ods and provide to your INSTALLER.

– W.A.R.R.I.O.R. Overall Equipment Efficiency

– the Workplace Authenticated Runtime Resource Input and Output Reporter is, in and
of itself, both a functional O.E.E. / T.E.E.P. (Overall Equipment Efficiency /
Total Equipment Effective Productivity) module for S.E.E.R. – and a proof of
concept that such systems do not have to be complicated, can store inordinately
large amounts of data (have a very long history – 4 years was the design goal, 10
years is not unreasonable given enough storage space), and can run in a fast paced
industrial production facility reliably.

– That said, W.A.R.R.I.O.R. Is the most difficult model to understand if you are
unfamiliar with S.E.E.R.'s inner workings. It is highly recommended that it not
be the first model which is deployed in a facility, as the learning curve is a bit
steeper, and the potential aggravation much greater than with other models. This
is not to detract from the robustness or efficacy of the model, but simply to
state that level of understanding of both one's own industrial processes and
machines, as well as one's understanding of S.E.E.R., is much greater than is
required for the other models (with respect to setup and install – daily use /
operation is as simple as any other model).

– Proprietary plugin integration with Lactalis Bartender Package Labeling System
(now called APlus). This plugin will not be released to the public and will bear
a proprietary exclusive license (specifically due to security concerns). However,
there is a very basic “nuts-and-bolts” template of what a labeling plugin should
do – which will allow you to build your own for integrating with your own labeling
system. Also, in the Operator Guide for W.A.R.R.I.O.R., a description of the
basic functions and some screenshots of controls for labeling exist, which will
give you a good idea of how you want to go about integrating your own labeling
system (if you choose to – by no means are you required to use a labeling system
with W.A.R.R.I.O.R., this functionality is simply here for your convenience).

– For any area you wish to use this model, you'll require the following data points:

+--------------------+--------------+
| MACHINE_NAME | varchar(30) |
+--------------------+--------------+
| OPERATOR | mediumint(9) | *STORAGE ONLY
| STATE | tinyint(4) | *YOU PROVIDE!
| ALARM | smallint(6) | *YOU PROVIDE!
| CORRECTIVE_ACTION | tinyint(4) | *STORAGE ONLY
| PACKAGE_CLASS | mediumint(9) | *YOU PROVIDE!
| PACKAGES_PER_CYCLE | smallint(6) | *YOU PROVIDE!
| CYCLES | bigint(20) | *SIZE 1
| JOB_NUMBER | bigint(20) | *SIZE 1 *STORAGE ONLY
| SCHEDULE_NUMBER | varchar(35) | *INTERNAL – DOES NOT XMIT TO OPC DEVICE
+--------------------+--------------+

– Items marked STORAGE ONLY:
– These are items that S.E.E.R. Will fill in for you. S.E.E.R. Simply

needs some place to store this information on your OPC Device. So make
sure that the register is unused by anything else, and is read/write
accessible.

– Items marked SIZE 1:
– These should be a register capable of holding an integer of minimum size

1x10^18 (for an Allen Bradley PLC, this would be a Floating Point
register [such as F8:1, or F8:7, etc...], as that register type can
handle this size number).

– Items marked INTERNAL – DOES NOT XMIT TO OPC DEVICE:
– Is handled by W.A.R.R.I.O.R. Internally, so from the OPC Device

programmer's point of view, you can ignore it... don't setup a register
for it or anything; pretend it doesn't exist (even though it does).

– Items marked YOU PROVIDE!:
– this is the feedback your machine is going to constantly generate, and

will be read by S.E.E.R. In order to determine your efficiency. You
will have to write logic within your OPC Device in order to generate
this information, and you MUST comply with the following keys...

– STATE:
– integer value of 0 = MACHINE IS IDLE or UNKNOWN CAUSE OF

DOWNTIME

– if machine has not cycled in “X”
minutes (where you choose a value that
is reasonable... we're partial to 2
minutes as a good starting point), then
let's assume it is down but since we
didn't detect any faults we don't know
if it is down because it is scheduled
down or because it is broken down...
(this is where a user reading a report
will refer to the CORRECTIVE ACTION for
more information.

– Integer value of 1 = MACHINE IDLE AND THE FAULT WAS DETECTED

– push this state when your OPC Device
has picked up a hard fault on your
machine (for example, “main motor aux
input dropped out” or anything else
that is known for certain will cause
the machine to STOP).

– Indicate the cause of the downtime by
pushing the appropriate integer value
into the ALARM register.

– Integer value of 2 = MACHINE UNDER MAINTENANCE SUPERVISION,
DIAGNOSTIC OR REPAIR.

– You do NOT choose when to push this
state. Instead, declare some register
or bit on your OPC Device, and when
S.E.E.R. Writes a pre-determined value
to that bit (for example, write “1” to
B3:0/1), your OPC Device will push a

value of “2” into the STATE register
FOR AS LONG AS THE TRIGGERING REGISTER
IS SET TO THE PRE-DETERMINED VALUE
(usually “1”).

– Additionally, if STATE = 2, then force
the ALARM register value to be “1”
(which is indicated as “ALARM: In
Maintenance Mode”.

– Additionally, if STATE = 2, then
inhibit increment of cycle count. That
is to say, do not allow your CYCLE tally
count to increase for the entire
duration of time that STATE = 2. This
allows Maintenance personnel to run a
machine while empty and not have the
cycles count toward production. Also,
it allows the time a machine is in
maintenance to be omitted from
efficiency calculations.

– OPTION! - depending on your facility's
policy, you may CHOOSE to consider all
“Maintenance Mode” time as DOWNTIME. In
order to do this, you will have to add
a rung of logic to your OPC Device as
follows...
if STATE = 2, set CORRECTIVE ACTION =
1,
 which is indicated “Maintenance
 Mode”.

– Otherwise, do NOT alter the corrective
action based upon Maintenance Mode...
just leave it alone!

– Integer value of 3 = MACHINE RUNNING WITH WARNING (OR MINOR
FAULT)

– If the machine is running, but you pick
up a warning, such as “low oil” or “low
bags” or “low product”, and while this
warning is something the operator and
staff should be warned about, it HAS
NOT caused the machine to stop, then
indicate the state as “3” (RUNNING WITH
WARNING).

– Indicate the cause of the warning by
pushing the appropriate value into the
ALARM register.

– Integer value of 4 = MACHINE RUNNING – NO FAULTS!

– If and ONLY IF the machine is running
with no faults (STATE Key #4), then the
following MUST be adhered to...

– 1) make sure ALARM value goes to '0'
(hey, you said there weren't any faults
or warnings, so there better not be any
showing up!)

– 2) set CORRECTIVE ACTION to '0', do not
allow an operator to enter a corrective
action if nothing is wrong!!

– ALARM:
– integer value of 0 = no faults or warnings present
– integer value of 1 = MAINTENANCE MODE
– integer value of 2 = RESERVED
– integer value of 3 = RESERVED
– integer value of 4 = your first custom alarm
– integer value of 5 = your second custom alarm
– and so on and so forth, up to integer value of 32767 if you need

** ALL ALARM VALUES ARE GENERATED BY THE OPC Device AND READ BY

S.E.E.R.

– CORRECTIVE ACTION:
– integer value of 0 = no faults or warnings present
– integer value of 1 = MAINTENANCE MODE
– integer value of 2 = RESERVED
– integer value of 3 = RESERVED
– integer value of 4 = your first custom action
– integer value of 5 = your second custom action
– and so on and so forth, up to integer value of 32767 if you need

** ONLY CORRECTIVE ACTION VALUES '0' and '1' ARE GENERATED BY THE
OPC Device... THE REST ARE GENERATED BY S.E.E.R., SO BE SURE TO
PROGRAM YOUR OPC DEVICE SUCH THAT IT ONLY WRITES VALUES TO THE
CORRECTIVE ACTION REGISTER IN THE TWO SPECIFIC CASES WHEN IT
SHOULD BE DOING SO... THE REST OF IT TIME IT SHOULD ALLOW
S.E.E.R. TO WRITE WHATEVER IT WISHES TO THIS REGISTER.

– CYCLES:
– this register is to be tallyed by the OPC Device, and should

increment up each time a 'full package' is detected. For
example, if you are making cases of mouth wash, at 12 bottles
per case, then each time a CASE is detected the CYCLE register
should be incremented up by '1' (not 12!).

– this register must be RESET to ZERO by the OPC Device any time
the S.E.E.R. Sends a reset signal to a preset OPC Device
register. For example, your if B3:0/1 is our 'reset' bit, then
your OPC Device should monitor B3:0/1, and if it is set to “1”
(or some other pre-defined value), then your OPC Device should
reset the CYCLE count to '0', and then CLEAR the reset register
(B3:0/1).

– PACKAGE CLASS:
– this register will correspond with a list of package types. For

example, let's say you have 5 different package types and

declare for them integer values from 0 to 32767:
– 12pack_shrink_wrap = value 0
– 12pack_box = value 1
– 12pack_display_case = value 2
– 18pack_box = value 3
– 24pack_box = value 4

** So, anytime the machine is running “12pack_display_case”,
your OPC Device must detect that (whether it be from an
operator HMI, a toggle switch, or whatever), and write a
value of “2” to the PACKAGE CLASS register.

** This will also allow S.E.E.R. To know how many 'eaches'
or 'units' are in a single package.

– PACKAGES_PER_CYCLE
– if your machine is able to detect each package produced, then

you may set this value to “1” always. Otherwise, in the event
that your machine is not able to detect packages, but, instead
is able to detect how many times it has cycled... then
(depending on what product you're running) your OPC Device
should set this register to the NUMBER OF PACKAGES PRODUCED BY
THE MACHINE IN ONE CYCLE.

– For example, let's say you have a cup-filling machine that can
produce up to 12 cups per cycle. You do not have the ability
to detect individual cups. Now... for product “A”, you run
the machine at half capacity, filling only half of its banks,
and product 6 cups every time the machine cycles. When you
run product “B”, you run the machine at full capacity, filling
all the banks, and eject 12 cups every time the machine
cycles. Your OPC Device must write a value of “6” to the
PACKAGES PER CYCLE register when running product “A”, and a
value of “12” when running product “B”.

– Shutting it all down:

– When you wish to take a line or machine down, and not have to list it as
“scheduled down”, have the operator set the JOB to “None” (the 'Zero' JOB).

W.A.R.R.I.O.R. Will skip over 'Zero' JOB's as if the time period did not even
exist (this is intentional). If you wish to list the line as “Scheduled
Down”, then you will have to fault it out first (either by pressing an
Emergency Stop (in order to cause immediate fault) or waiting a few moments
for the “machine has not cycled in X minutes” timer to expire... after which
time you may then set the corrective action appropriately.

– Also define (GLOBAL):

– Current Status Time Window (minutes)
– how far back do you want to examine when displaying “current status”

statistics to operators?
– typically 2 to 4 hours is good.

– Define the CATEGORIES (integer list from 0 to 32767) that you wish to group
DOWNTIME and UNSCHEDULE TIME by...

– a typical plant will use values similar to the following:
– 0 = unexplained (required)
– 1 = other
– 2 = breakdown
– 3 = waiting for product or supplies
– 4 = machine adjustment during run
– 5 = product or machine changeover
– 6 = product / packaging handling issue
– 7 = scheduled break or lunch break
– 8 = scheduled down / not scheduled to run / or cleaning

** NOTE, later, we will take the entire list of ALARMS and CORRECTIVE
ACTIONS that you provide for each Local 'set', and link each one of
them to one of these CATEGORIES. That way, we can say (for example)
that 40 minutes down due to ALARM '3' (failed motor), and 20 minutes
down to due ALARM '9' (piston failed to reach reed switch) can be
summarized as “60 minutes down due to CATEGORY '2' – breakdown”.

– You should break down your items by location (LOCAL). For example, if you have 5

lines in the Mozzarella Dept., 2 in the Ricotta Dept., and 1 in the String Cheese
Dept.; then you may declare as follows:

– Local_Mozzarella
MOZZ_LINE1 (or however you wish to distinguish)
MOZZ_LINE2
MOZZ_LINE3
MOZZ_LINE4
MOZZ_LINE5

– Local_Ricotta
RIC_LINE1
RIC_LINE2

– Local_String
STRING_LINE1

– Each Local group will have the following options which need to be declared:
– An integer list of all possible SHIFTS of work time of all possible lines (in

one list from 0 to 32767), along with START and END hours (24 hour clock) for
each.

– typically...
– shift 0 = FIRST // start @ 06:00 / end at 15:00
– shift 1 = SECOND // start @ 15:00 / end at 23:00
– shift 3 = THIRD // start @ 23:00 / end at 06:00

– Define OPC Device registers for each line as follows:
– Operator register
– Corrective Action register
– Job_Number register
– Cycle_Reset register

– Define a value to write to any CYCLE RESET register in order to trigger your
OPC Device to clear (zero / reset) its CYCLE COUNT:

– typically “1”
– Unit of Measure PACKAGE UNIT:

– when you break down a package (whether it be a box or a shrink-wrap or a
carton...) what are the individual units called?

– typically “eaches” or “units”.
– Unit of Measure PACKAGE UNIT MASS:

– when you weigh one of the individual units (as described above), what do
you want the weight to be in?

– typically “pounds” or “kilograms”
– An integer list of all possible ALARMS of all possible machines (in one list

from 0 to 32767)
– 0 is required to be “none”
– 1 is required to be “maintenance mode”
– all others from 2 to 32767 may be whatever you choose
– be sure to define a CATEGORY (from the GLOBAL options, above) for each

ALARM)
– An integer list of all possible CORRECTIVE ACTIONS of all possible machines

(in one list from 0 to 32767)
– 0 is required to be “none entered”
– 1 is required to be “maintenance mode”
– 2 is required to be “scheduled down or cleaning”
– 3 is required to be “operator on break or lunch”
– all others 4 through 32767 may be whatever you choose.

– Examples include:
– 4 = waiting on product
– 5 = product changeover
– 6 = machine or tooling changeover
– 7 = machine adjustment during run
– 8 = breakdown – other.

– be sure to define a CATEGORY (from the GLOBAL options, above) for each
CORRECTIVE ACTION.

– An integer list of all possible PACKAGE CLASSES of all possible machines (in
one list from 0 to 32767)

– 0 is required to be “unipac” (this means 1 unit or each per package)
– all others from 2 through 32767 may be whatever you wish
– be sure to include the UNIT COUNT (number of units) per each PACKAGE

CLASS type.
– be sure to include the UNIT MASS (mass of each unit) per each PACKAGE

CLASS type (and be sure this mass is in the unit of measure defined by
'Unit of Measure PACKAGE MASS').

– be sure to include a TARGET PRODUCTION RATE for each PACKAGE CLASS.

** NOTE the TARGET PRODUCTION RATE is defined as “UNITS (or 'EACHES')
PER HOUR” !! If your company's figures are listed by day or by shift,
then divide accordingly!! If your company's figures are listed by
poundage (mass produced over a time period), then simply divide the
mass value by the “UNIT MASS” value, and you will have the TARGET
PRODUCTION RATE (per hour) in UNTIS (or 'EACHES').

– Provide a JOB LIST:
– this is a list of all Job / Task / or Resource Numbers, and a brief

description of what each one of them is.
– For example...

– JOB DESC
– ----------- -----------------------------
– XA567 12 pack, 3 oz. Toothpaste, 'Crest' brand
– 98C27869 6 pack, 12 oz. Beer, 'Budweiser' brand
– etc... etc...

– WORKSHEET

Complete SEER_-_WORKSHEET_WARRIOR.ods and provide to your INSTALLER.

– TEMPLATES

For the sake of avoiding headaches, templates for PLC logic have been developed
for the following PLC manufacturers / models. If anyone would like to add more
templates, by all means, submit them back to us – upstream, and we will include
them. In the mean time, anyone using these model PLC's should be able to
literally 'cut and paste', and have the bulk of the work already done for them.
Users of other brands should be able to use these as a guide to successfully
implement in their devices.

ALLEN BRADLEY CONTROLLOGIX FAMILY

SEER_WARRIOR_EXAMPLE_20110624_ALLENBRADLEY_RS5000_COMPACT_CONTROL
 _LOGIX.ACD

SEER_WARRIOR_EXAMPLE_20110624_ALLENBRADLEY_RS5000_COMPACT_CONTROL
 LOGIX-_CONTROLLER_TAGS_AND_MEMORY_REGISTERS.CSV

SEER_WARRIOR_EXAMPLE_20110624_ALLENBRADLEY_RS5000_COMPACT_CONTROL
 LOGIX-_DESCRIPTIONS_COMMENTS.CSV

*note – RS-5000 ladder logic file along with tag database file and
descriptions file, both of which are necessary if your intend to have
any human-readability to your program.

ALLEN BRADLEY SLC / uLOGIX (MICROLOGIX) / (and cut-n-paste into PLC-5)

→ SEER_WARRIOR_EXAMPLE_20110624_ALLENBRADLEY_RS500_SLC_uLOGIX.RSS

*note – Ladder logic is the same for PICO models, however it cannot be
copied and pasted into the PICO program software from RS-500, as it
can into RS-5 (for PLC-5).

*note – this version is also supplied in PDF format, for viewing
without proprietary software – enabling you to mimmic the logical flow
in another type of PLC.

– THIN CHART

– an electronic replacement for the 'old standard' circular chart recorder.
Capability includes 3 analog pens and 1 event pen (total of 4 pens) per chart.

– includes regulatory compliance by allowing supervisors to digitally sign and
comment on records.

– effectively replaces paper chart recorders!
– complies with Pasteurized Milk Ordinance when properly installed and administered
– For any area you wish to use this model, you will require the following data

points:

+------------------+-------------+
| CHARTNAME | varchar(30) |
+------------------+-------------+
PEN1	float(7,2)
PEN2	float(7,2)
PEN3	float(7,2)
EVENT	tinyint(4)
+------------------+-------------+

– Also define (GLOBAL):
– There are currently no Global Options for the general user (the ones present

are for installer / integrator use only).

– You should break down your items by location (LOCAL). For example, if you have 5
 Charts in the Mozzarella Dept., 2 in the Ricotta Dept., and 1 in the String

 Cheese Dept.; then you may declare as follows:
– Local_Mozzarella

MOZZ_CHART1 (or however you wish to distinguish)
MOZZ_CHART2
MOZZ_CHART3
MOZZ_CHART4
MOZZ_CHART5

– Local_Ricotta
RIC_CHART1
RIC_CHART2

– Local_String
STRING_CHART1

– Each Local group will have the following options which need to be declared:
– a Name for the Group of Charts
– Manual Record Entry Time Interval (minutes)
– Each chart within the Local group must have the following options declared:

– a Name for the individual chart
– a Name for PEN1 on the Chart (use of PEN1 is required!)
– a Name for PEN2 on the Chart (if used, if not you can call it 'None' or

something similar)
– a Name for PEN3 on the Chart (if used, if not you can call it 'None' or

something similar)
– a Name for EVENT PEN on the Chart (if used, if not you can call it

'None' or something similar)
– a UNIT OF MEASURE for PEN1, PEN2, and PEN3; if any pen is not used,

simply declare UM to be “n/a” or something similar.
– A LOW and HIGH range for PEN1, PEN2, and PEN3 (for example, '30 to 230',

or '0 to 100', etc...) If a PEN is not used, simply define it as '0 to
100'.

– Regarding OPC Device configuration – the EVENT pen on each chart is hardcoded to
accept only one type of input, “On” or “Off”. This is accomplished very simply
with a “0” for “Off” and a “1” for “On” (Off = Event NOT occurring, On = Event
IS occurring). You may use a 'bit', an 'integer', a 'float'; it does not
matter, provided the resultant value is a “0” or a “1”.

– WORKSHEET

Complete SEER_-_WORKSHEET_THINCHART.ods and provide to your INSTALLER.

– TOUCH PANEL

– an web-based, multi-point accessible replacement for a typical operator interface
(touch screen HMI, also called 'Panel View').

– The overall simplicity of this implementation does not lend it to replacing high-
end or full featured panels. However, it does a very good job of replacing simple
panels, or serving as a secondary panel for use by remote Users / Supervision / or
any other person(s) who need just the 'basic' controls for a machine or system.

– For any area you wish to use this model, you will require the following data
points:

+-----------+-------------+
| PANELNAME | varchar(30) |
+-----------+-------------+
ALARM	varchar(60)
CELL11	varchar(60)
CELL12	varchar(60)
CELL13	varchar(60)
CELL14	varchar(60)
CELL15	varchar(60)
CELL16	varchar(60)
CELL21	varchar(60)
CELL22	varchar(60)
CELL23	varchar(60)
CELL24	varchar(60)
CELL25	varchar(60)
CELL26	varchar(60)
CELL31	varchar(60)
CELL32	varchar(60)
CELL33	varchar(60)
CELL34	varchar(60)
CELL35	varchar(60)
CELL36	varchar(60)
CELL41	varchar(60)
CELL42	varchar(60)
CELL43	varchar(60)
CELL44	varchar(60)
CELL45	varchar(60)

CELL46	varchar(60)
CELL51	varchar(60)
CELL52	varchar(60)
CELL53	varchar(60)
CELL54	varchar(60)
CELL55	varchar(60)
CELL56	varchar(60)
CELL61	varchar(60)
CELL62	varchar(60)
CELL63	varchar(60)
CELL64	varchar(60)
CELL65	varchar(60)
CELL66	varchar(60)
+-----------+-------------+

– Also define (GLOBAL):
– There are currently no Global Options for the general user (the ones present

are for installer / integrator use only).

– Each panel (LOCAL) can have multiple screens (pages), for example...
– Local_Shipping_Dock

Screen_0_Incoming_Trucks (or however you wish to distinguish)
Screen_1_Outgoing_Trucks
Screen_2_Pending_Orders

– Local_Maintenance
Screen_0_Boiler_Room
Screen_1_Power_Room
Screen_2_Main_Hydraulics

– Each Local group will have the following options which need to be declared:
– a Name for the Panel (group of Screens)
– a list of Alarm statuses, integer values from 0 to 32767, where 0 is always

“None” or something similar.
– Common status values are:

– 0 = None
– 1 = Emergency Stop Pressed
– 2 = Overcurrent Fault

– a list of available Notifications, integer values from 0 to 32767, where 0 is
always “” (an empty string). You may list a wide variety of things here,
such as varying multi-state indicator button states, any button or cell
description, any notification, etc... etc...

– Each Screen within the Local group must have the following options declared
for each of it's 36 cells (6 rows x 6 columns, where cells are numbered as
“cell[row][column]” - meaning that cell45 is the 5th cell on the 4th row.:

– a CELL TYPE:

"EMPTY" - an empty, blank cell, with no contents and a
white background

"EMPTY_INVERSE" - an empty, blank cell, with no centents and a
black background

"DISPLAY_TEXT" - just plain text from dictionary displayed on
white background

"DISPLAY_VALUE" - cell value from database displayed on white
background

"DISPLAY_VALUE_EDIT" - same as above, but the value can be
changed, and upon change it is written
to a predefined address

"ON_OFF_IND_TOGGLE" - cell value (0 = off / 1 = on) is
indicated, and the cell is a button
that when pressed will write the
opposite value to predefined location

"ON_OFF_IND_MOMENTARY" - same as above, but will write a '1'
always... it is assumed that whatever
controller is being written to will
automatically handle the input, and then
return the location value to '0' on it's
own

"ON_OFF_IND" - same as above, but just an indicator,
no button

 "BUTTON_MOMENTARY" - when pressed will write a predefined value
to a predefined location. There is no
indicator!

"MULTISTATE_IND_TOGGLE" - cell value (0 through 9) is indicated by a
colored highlight. When pressed, will write
the next incremental value (0 to 9) to
predefiend location

"MULTISTATE_IND" - same as above, but just an indicator, no button

"LEVEL" - cell value (min to max) is depicted by
a bar graph of predefined color

"LEVEL_HIGH_WARN" - same as above, but bar color is
(green = good = low / red = bad = high)

"LEVEL_LOW_WARN" - same as above, but bar color is
(green = good = high / red = bad = low)*/

– a list (actually an array) of CELL OPTIONS:

"EMPTY" - no options, simply list as "NONE”

"EMPTY_INVERSE" - no options, simply list as "NONE"

"DISPLAY_TEXT" - one (1) option...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY”

"DISPLAY_VALUE" - one (1) option...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"

"DISPLAY_VALUE_EDIT"- two (2) options...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"
2-"mod_openopc_LEAF_TO_WRITE_TO"

"ON_OFF_IND_TOGGLE" - two (2) options...

1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"
2-"mod_openopc_LEAF_TO_WRITE_TO"

"ON_OFF_IND_MOMENTARY"- two (2) options...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"
2-"mod_openopc_LEAF_TO_WRITE_TO"

"ON_OFF_IND" - one (1) option...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"

"BUTTON_MOMENTARY" - four (4) options...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"
2-"mod_openopc_LEAF_TO_WRITE_TO"
3-"VALUE_TO_WRITE"
4-"ID_NUMBER_OF_COLOR_FOR_BUTTON");

"MULTISTATE_IND_TOGGLE"- two (2) options...
1-"OFFSET_FOR_ID_NUMBER_OF_TEXT

_DECLARATION_TO_DISPLAY"
2-"mod_openopc_LEAF_TO_WRITE_TO"

"MULTISTATE_IND" - one (1) option...
1-"OFFSET_FOR_ID_NUMBER_OF_TEXT

_DECLARATION_TO_DISPLAY"

"LEVEL" - four (4) options...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"
2-"MIN_RANGE"
3-"MAX_RANGE"
4-”NAME_OF_COLOR_FOR_BAR"

"LEVEL_HIGH_WARN" - four (4) options...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"
2-"MIN_RANGE"
3-"MAX_RANGE"
4-”VALUE_TO_WARN_AT"

"LEVEL_LOW_WARN" - four (4) options...
1-"ID_NUMBER_OF_TEXT_DECLARATION_TO_DISPLAY"

2-"MIN_RANGE"
3-"MAX_RANGE"
4-”VALUE_TO_WARN_AT"

– a Device to Log and Register to Log:
– if the cell will be used to display any machine data (for example,

if it is a “DISPLAY_VALUE”, “DISPLAY_VALUE_EDIT”, “ON_OFF_IND”, or
similar cell type), then you must declare the OPC DEVICE and the
MEMORY REGISTER on that device in order for it to be monitored and
kept up to date.

– WORKSHEET

Complete SEER_-_WORKSHEET_TOUCHPANEL.ods and provide to your INSTALLER.

– TTY (DEVICE) PERFORMANCE MODEL

– allows users to keep tabs on TTY devices, such as barcode scanners or other such
items. Reports for “good data” versus “failed or bad data”, and performance
figures by device and by group of devices (local instance) are available – as
well as a individual entry display (display all entries on a given device over a
given time period).

– You can populate the database using any program you wish, however we strongly
recommend syphon for it's ease of use and robust performance. As of March 2013,
syphon now has the ability to log data, export that same data via OPC,
conditionally or 'as is' – all via a single socket connection to the device.

– For any area you wish to use this model, you will require the following data
points:

+-------------+-------------+
| MACHINENAME | varchar(30) |
+-------------+-------------+
| TTY | varchar(30) | ← the datastream output by the device.
+-------------+-------------+

– Also define (GLOBAL):
– none

– You should break down your items by location (LOCAL). For example, if you have 5
 barcode scanners, 2 rfid-units, and 1 door access keypad area; then you may declare
 as follows:

– Local_BARCODE
CODE_1 (or however you wish to distinguish)
CODE_2
CODE_3
CODE_4
CODE_5

– Local_RFID
RFID_1
RFID_2

– Local_KEYPAD
KEYPAD_1

– Each Local group will have the following options which need to be declared:
– Snapshot time (in minutes); which dictates how far back (from the present

time) the system will analyze averages when a user displays the “Current
Status” of a department

– Snapshot limit (number of entries); which dictates how many discrete entries
will be displayed for any user viewing the “Current Status” of the system.

– A list of all devices in the local group, along with a note as to whether
each device is “priority” or not. Priority (Inclusion) dictates that the
device is included in formulation of the department's performance average,
whereas any device 'excluded' will not be a part of the average(s).

– Do you want to require that the device entry value be numeric in order for it
to be considered valid / good ? (yes or no)

– Do you want to limit the maximum and minimum number of characters in order to
consider a device's entry value to be valid / good ? (yes or no, if yes –
then what are your minimum / maximum character limits).

– Do you have any phrases (strings) which, if found anywhere in the device's
entry will result in that entry being considered NOT valid / good ? (if so,
list them all).

– WORKSHEET

Complete SEER_-_WORKSHEET_TTYPERFORMANCE_MODEL.ods and provide to your
INSTALLER.

